Efficient Social Network Multilingual Classification using Character, POS n-grams and Dynamic Normalization

نویسندگان

  • Carlos-Emiliano González-Gallardo
  • Juan-Manuel Torres-Moreno
  • Azucena Montes Rendón
  • Gerardo Sierra
چکیده

In this paper we describe a dynamic normalization process applied to social network multilingual documents (Facebook and Twitter) to improve the performance of the Author profiling task for short texts. After the normalization process, n-grams of characters and n-grams of POS tags are obtained to extract all the possible stylistic information encoded in the documents (emoticons, character flooding, capital letters, references to other users, hyperlinks, hashtags, etc.). Experiments with SVM showed up to 90% of performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tweets Classification using Corpus Dependent Tags, Character and POS N-grams

This paper is part of the Author Profiling task at PAN 2015 contest; in witch participants had to predict the gender, age and personality traits of Twitter users in four different languages (Spanish, English, Italian and Dutch). Our approach takes into account stylistic features represented by character Ngrams and POS N-grams to classify tweets. The main idea of using character Ngrams is to ext...

متن کامل

Speech Recognition on English-Mandarin Code-Switching Data using Factored Language Models - with Part-of-Speech Tags, Language ID and Code-Switch Point Probability as Factors pdfsubject=Multilingual Speech Recognition

Code-switching is defined as ”the alternate use of two or more languages in the same utterance or conversation” [1]. CS is a wide-spread phenomenon in multilingual communities, where multiple languages are concurrently used in a conversation. For automatic speech recognition (ASR), particularly intra-sentential code-switching poses an interesting challenge due to the multilingual context for la...

متن کامل

All-In-1 at IJCNLP-2017 Task 4: Short Text Classification with One Model for All Languages

We present ALL-IN-1, a simple model for multilingual text classification that does not require any parallel data. It is based on a traditional Support Vector Machine classifier exploiting multilingual word embeddings and character n-grams. Our model is simple, easily extendable yet very effective, overall ranking 1st (out of 12 teams) in the IJCNLP 2017 shared task on customer feedback analysis...

متن کامل

ALL-IN-1: Short Text Classification with One Model for All Languages

We present ALL-IN-1, a simple model for multilingual text classification that does not require any parallel data. It is based on a traditional Support Vector Machine classifier exploiting multilingual word embeddings and character n-grams. Our model is simple, easily extendable yet very effective, overall ranking 1st (out of 12 teams) in the IJCNLP 2017 shared task on customer feedback analysis...

متن کامل

A POS Tagger for Code Mixed Indian Social Media Text - ICON-2016 NLP Tools Contest Entry from Surukam

Building Part-of-Speech (POS) taggers for code-mixed Indian languages is a particularly challenging problem in computational linguistics due to a dearth of accurately annotated training corpora. ICON, as part of its NLP tools contest has organized this challenge as a shared task for the second consecutive year to improve the state-of-the-art. This paper describes the POS tagger built at Surukam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016